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Linear variational approximation to the gx2" anharmonic 
oscillator 
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Departamento de Fisica, National University, CC 67 1900, La Plata, Argentina 
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Abstract. An approximate, variational method for the study of the gx2" anharmonic 
oscillator is presented. The idea of the method is to introduce into the unperturbed 
oscillator states the correlations originated by the presence of the anharmonic term via a 
unitary operator exp(iF) which is expanded up to second order in F. The variational 
principle determines F and one is led to a linear system of equations. The whole 
unperturbed basis is employed. 

1. Introduction 

The anharmonic oscillator poses a problem which has been the subject of much work, 
both from the analytical and the numerical point of view. During the last decade the 
corresponding literature has been greatly enriched (Banerjee et a1 1978, Boyd 1978, 
Fung et a1 1978, Gillespie 1976, Graffi and Grecchi 1973, Halliday and Suranyi 1980), 
the interest in this type of investigation arising from the belief that the nature of the 
solutions of the corresponding Hamiltonian may lead to a fuller understanding of an 
equivalent one-dimensional model Hamiltonian in field theory (Boyd 1978). 
Moreover, the knowledge of the exact eigenvalues of an x4-anharmonic oscillator is of 
particular interest in molecular physics. More specifically, we are talking about 
quantum mechanical systems defined by Hamiltonians of the form 

I?=&+AG (1.1) 

where f i 0  is the harmonic oscillator and is a polynomial of even degree. In order to 
evaluate the eigenvalues and eigenvectors of (1.1) several approximation procedures 
have been applied, such as WKB techniques (Bender and Wu 1969, Lu et a1 1973), Hill 
determinant (Biswas et a1 197 l), approximate canonical transformation (Halpern 
1973), Borel-Pad6 methods (Graffi et a1 1970, 1971), etc. 

In the present work we shall restrict ourselves to the one-dimensional case, 

f i  = B2/2m +$?"i=+ g P ,  (1.2) 

nz integer, and present a simple variational procedure which allows one to obtain an 
approximation to the eigenvalues and eigenfunctions of the Hamiltonian (1.2). 
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The method yields expressions that are very simple to compute. The corresponding 
formalism is developed in § 2 and specific applications are made in § 3 .  The results are 
discussed in § 4. 

2. Formalism 

2.1. The mapping operator 

In appropriate units our problem is that of looking for the spectrum of the differential 
operator 

(2.1) -d2/dX2 + x 2  + gX2” m = 1 , 2 , .  . . . 
Introducing the creation and destruction operators 

B t = f i + i i  4 = j - i i  (2.2) 

such that {a*,&’} = 2 ,  we can find an Hermitian operator 6 according to 

fi = -i(L+ - 6) 12.3) 

and rewrite our Hamiltonian as 

fi = + i + gfi2m2-2m 12.4) 

We denote by 1 j )  the eigenstates of 

f i 0  = 2 + B + i (2.5) 

whose eigenvalues will be called E,. The method to be proposed is based on the idea of 
relating the eigenstates 1 j )  of eo to those 1.T) of fi by means of a mapping operator fi, 

I J )  = exp(i8)Ij) (2.6) 

of the general form 
W 8 = i  h j k ) ( 6 t 2 k - B 2 k ) ,  (2.7) 

k = l  

The approximate procedure to be proposed here proceeds as follows. One expands 

12.8) 

and then determines the quantities hik’ (k = 1 , .  , , ,) of equation (2.7) by minimisation 
of (keep terms up to second order only) 

(2 .9 )  

It is worthwhile pointing out that, according to this prescription, (i) one is working 
with the whole unperturbedbasis (see equation (2.7)) and (ii) the hjk’ arise as the solution 
of a linear system of inhomogeneous equations 

the exponential in equation (2.6) up to second order 
1 ^ 2  - 14 exp(iF,) = i + iF; - TF, = e2 

- A IP Ej = (j lei”~He2 1 )  j ) .  

8EJ/8hjk’ = 0 r = 1 , 2 , .  . . . (2.10) 

The method to be developed can be applied to any excited state of G. However, 
only in the case of the ground state ( G S )  and that of the first excited state, does it provide 
us with an upper bound to the corresponding energies (in the latter case for reasons of 
symmetry). 
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2.2. Expectation values 

The general expression for the approximate energy of the jth excited state can be 
written in a compact form if we are willing to introduce some definitions. We shall need 
a scalar quantity byk, two column vectors C and h and a matrix M, as given below. 

b$ =( j lgn lk> (2.11) 

IICIIp = 2'+'r{[j ! / ( j  - 2 ~ )  !I (2.12) 

Ilhjllp = h:) (2.13) 

1 / 2  2n 1 / 2  2n  b j-2p.j - [ ( j  + 2 ~ )  ! / j  ! I  b j . j+2pI  

and 

The expectation value we are looking for is (see appendix for details of the calculations) 

EI = (JlI%(J) = ( j l f i l j )  + rb$' + C h - ihwjhj. 
The column vector h is the solution of the system (2.iO) which leads to 

(2.15) 

Mjhj = Cj (2.16) 

which involves an infinite number of equations. In a practical calculation one is forced 
to truncate the system for a given finite number N of equations, i.e. 

(2.17) 

The scheme here proposed can be easily generalised in order to study polynomial 
perturbations to Ho. As an example, if the anharmonicity is given by Ax" + +xm it is 
enough to redefine the quantities b zb introducing instead 

b:: = (alAB" +pB"Ib). (2.18) 

3. Numerical example 

The first point to be investigated concerns the 'size' of the system given by equation 
(2.10), which lead to the infinite linear system (2.16). In truncating it, as is done in 
(2.17), how large should N and, correspondingly, k be? This question can be discussed 
with reference to table 1, which illustrates the situation that arises in the case gx4 for 
g = 0.1. The table displays the quantities hik' for different values of N (along the 
vertical). The index k runs along the horizontal, and it is seen that (i) h'k' decreases 
rapidly as k increases and (ii) for a given k, the corresponding value of h converges very 
quickly as N grows, attaining afterwards stable values. Thus the linear system of 
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Table 1. Values of hbk' for different sizes ( N )  of the linear system given by (2.17), 
corresponding to the anharmonicity given by 0. lx4. 

N k l  2 3 4 5 6 
- 

2 -0.139 22 lo-'  0.394 14 lo-? 
3 -0.139 24 .  lo-' 0.41421 . lo-' 0.775 35 lo-' 
4 Stable 0.414 37 10.' 0.797 0 7 .  lo-' 0.520 59 10 ' 
5 Stable 0.797 01 lo-' 0.516 81 lo-' -0.628 99 10."' 
6 Stable 0.515 67 lo-' -0.994 76 10 -0.452 77 10 " 
7 0.515 65 10.' -0.101 80. -0.502 93 10 I '  

8 Stable -0.101 87 10 ' -0.505 49 .10  " 
9 Stable -0.505 56 10. I '  

10 Stable 

Table 2. Ground-state energy of the gx4 anharmonic oscillator. The degree of agreement 
(%) between the approximate results obtained in this work and the Borel-Pad6 exact ones 
(Graffi et a1 1970) is displayed as a function of g. 

0.1 99.96 0.6 97.91 
0.2 99.79 0.7 97.22 
0.3 99.48 0.8 96.51 
0.4 99.04 0.9 95.75 
0.5 98.50 1 .o 94.98 

Table 3. First excited state of the gx4 anharmonic oscillator. The degree of agreement ( 9 6 )  
between the approximate results and those obtained with the Hill determinant method 
(Biswas et a1 1971) is displayed as a function of g. 

0.1 99.87 0.6 95.22 
0.2 99.38 0.7 93.95 
0.3 98.59 0.8 92.65 
0.4 97.59 0.9 91.35 
0.5 96.45 1.0 90.05 

Table 4. Ground-state energy of the g x h  anharmonic oscillator. The degree of agreement 
('/o) between the approximate results obtained in this work and the Borel-Pad4 (Graffi et a /  
1970) exact ones is displayed as a function of g. 

0.1 98.71 0.6 83.09 
0.2 95.87 0.7 80.37 
0.3 92.55 0.8 74.82 
0.4 89.30 0.9 73.54 
0.5 86.52 1 .o 72.14 
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equations one is dealing with attains only modest proportions and poses an extremely 
simple computational problem. We do not show more examples, for other values of j 
and n, for the sake of brevity. They have been investigated, however, and support the 
conclusions drawn above. 

We present in this paper numerical results for V ( x )  = gx" with n = 4 in tables 1-3, 
and with n = 6 in table 4. The degree of agreement between our approximate results 
and those arising from exact treatments is rather good, both for the GS energies and for 
those corresponding to the first excited state. 

The results show that our method may be useful to provide approximate values for 
the energies in cases in which the numerical effort required with other approaches 
becomes prohibitive (n  large). It should be pointed out, in this respect, that the 
numerical effort involved in the cases of large values of n is not appreciably greater than 
for n = 4 or n = 6. 

A variational approach frequently employed is that of expanding the trial function 
in terms of the eigenstates of the unperturbed Hamiltonian 

M 

i = l  
\@(trial)) = ci14J (3.1) 

where the M states 14J do not span the corresponding Hilbert space. Variation with 
respect to the ci leads to an eigenvalue problem involving an M x M diagonalisation of 
the corresponding Hamiltonian. It may be of interest to compare results of our 
procedure with the variational ones obtained with the method just described. As an 
example, let us consider the GS energy for the perturbation gx4. We have performed the 
corresponding diagonalisations for M = 4, 6, 12 for g = 0.1. The agreement with the 
exact GS energy (%) is as follows: for M = 4, 99.94%; for M = 6, 99.99% and for 
M = 12t, 100% (up to nine digits). On the other hand, our approach coincides with the 
exact one up to 99.96% (and involves, as in all examples given in this paper, truncation 
at N = 3; i.e. a 3 x 3 linear system). The method of the present work is not, of course, as 
good as the one which uses the trial wavefunction (3.1), but it is not too far off, either. 

The main advantage of the method proposed here, lies in its computational 
simplicity, as it is able to replace the nonlinear problem posed by the ordinary approach 
by a linear one, albeit sacrificing some precision. 
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Appendix. On the calculation of expectation values 

In order to evaluate the expectation values (2.9) we shall utilise the identity (remember 
the definition (2.8)) 

A + i{A, F;) - &L, F; },F;} = di e;fij@e;fif = (AI) 
and try to express di in terms of our basic quantities h>k) .  The result has a rather 

t Of course, we are considering the first M eigenvectors of the unperturbed Hamiltonian. 
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formidable appearance, and a few preliminary definitions will prove to be of help. In 
the first place, it is convenient to have a common notation for both creation and 
destruction operators, and to this end we shall employ greek superscripts, i.e. A, 
(A, p = '+' or '-') and write the corresponding operator as aA,  a@. Next we introduce a 
special symbol for the commutator between the nth power of the operator 8 (equation 
(2.13)) and the kth power of the creation (or destruction) operator a" 

r:",'+P, 

and 

YPZ" = { x P i p ,  (a" ) ' }  
k - 1  

1. (A3 

Setting y = g/22" the previous definitions enable us to write for dp the following 
expression 

w r ( 1 )  w k - 1 -  
= 1 { (a  ) x A W , ( a  ) ( a w ) ' A 1 x ~ ~ , ( a w ) k - ' - '  

r = O  

W 

6, = H -  1 h ; P ) { x Y I ) +  -xp -  +y(r?,;f-r?,;f)} 
f Y - 1  

In order to obtain the expectation value (2.9) one needs only to evaluate the 
quantity ( p  16,l p )  which, according to (A6) and the preceding definitions, ultimately 
involves just the action of the creation (destruction) operator a" upon the unperturbed 
harmonic oscillator state Ip ) .  We give below the expectation values that are required in 
order to evaluate the GS energy ( p  = 0). 
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